JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Predicting Suicidal Behavior From Longitudinal Electronic Health Records.

OBJECTIVE: The purpose of this article was to determine whether longitudinal historical data, commonly available in electronic health record (EHR) systems, can be used to predict patients' future risk of suicidal behavior.

METHOD: Bayesian models were developed using a retrospective cohort approach. EHR data from a large health care database spanning 15 years (1998-2012) of inpatient and outpatient visits were used to predict future documented suicidal behavior (i.e., suicide attempt or death). Patients with three or more visits (N=1,728,549) were included. ICD-9-based case definition for suicidal behavior was derived by expert clinician consensus review of 2,700 narrative EHR notes (from 520 patients), supplemented by state death certificates. Model performance was evaluated retrospectively using an independent testing set.

RESULTS: Among the study population, 1.2% (N=20,246) met the case definition for suicidal behavior. The model achieved sensitive (33%-45% sensitivity), specific (90%-95% specificity), and early (3-4 years in advance on average) prediction of patients' future suicidal behavior. The strongest predictors identified by the model included both well-known (e.g., substance abuse and psychiatric disorders) and less conventional (e.g., certain injuries and chronic conditions) risk factors, indicating that a data-driven approach can yield more comprehensive risk profiles.

CONCLUSIONS: Longitudinal EHR data, commonly available in clinical settings, can be useful for predicting future risk of suicidal behavior. This modeling approach could serve as an early warning system to help clinicians identify high-risk patients for further screening. By analyzing the full phenotypic breadth of the EHR, computerized risk screening approaches may enhance prediction beyond what is feasible for individual clinicians.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app