JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

New developments in anti-sickling agents: can drugs directly prevent the polymerization of sickle haemoglobin in vivo?

The hallmark of sickle cell disease is the polymerization of sickle haemoglobin due to a point mutation in the β-globin gene (HBB). Under low oxygen saturation, sickle haemoglobin assumes the tense (T-state) deoxygenated conformation that can form polymers, leading to rigid erythrocytes with impaired blood vessel transit, compounded or initiated by adhesion of erythrocytes to endothelium, neutrophils and platelets. This process results in vessel occlusion and ischaemia, with consequent acute pain, chronic organ damage, morbidity and mortality. Pharmacological agents that stabilize the higher oxygen affinity relaxed state (R-state) and/or destabilize the lower oxygen affinity T-state of haemoglobin have the potential to delay the sickling of circulating red cells by slowing polymerization kinetics. Relevant classes of agents include aromatic aldehydes, thiol derivatives, isothiocyanates and acyl salicylates derivatives. The aromatic aldehyde, 5-hydroxymethylfurfural (5-HMF) increases oxygen affinity of sickle haemoglobin and reduces hypoxia-induced sickling in vitro and protects sickle cell mice from effects of hypoxia. It has completed pre-clinical testing and has entered clinical trials as treatment for sickle cell disease. A related molecule, GBT440, has shown R-state stabilization and increased oxygen affinity in preclinical testing. Allosteric modifiers of haemoglobin as direct anti-sickling agents target the fundamental pathophysiological mechanism of sickle cell disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app