Add like
Add dislike
Add to saved papers

Utility of neuron-specific enolase in traumatic brain injury; relations to S100B levels, outcome, and extracranial injury severity.

BACKGROUND: In order to improve assessment and outcome prediction in patients suffering from traumatic brain injury (TBI), cerebral protein levels in serum have been suggested as biomarkers of injury. However, despite much investigation, biomarkers have yet to reach broad clinical utility in TBI. This study is a 9-year follow-up and clinical experience of the two most studied proteins, neuron-specific enolase (NSE) and S100B, in a neuro-intensive care TBI population. Our aims were to investigate to what extent NSE and S100B, independently and in combination, could predict outcome, assess injury severity, and to investigate if the biomarker levels were influenced by extracranial factors.

METHODS: All patients treated at the neuro-intensive care unit at Karolinska University Hospital, Stockholm, Sweden between 2005 and 2013 with at least three measurements of serum S100B and NSE (sampled twice daily) were retrospectively included. In total, 417 patients fulfilled the criteria. Parameters were extracted from the computerized hospital charts. Glasgow Outcome Score (GOS) was used to assess long-term functional outcome. Univariate, and multivariate, regression models toward outcome and what explained the high levels of the biomarkers were performed. Nagelkerke's pseudo-R(2) was used to illustrate the explained variance of the different models. A sliding window assessed biomarker correlation to outcome and multitrauma over time.

RESULTS: S100B was found a better predictor of outcome as compared to NSE (area under the curve (AUC) samples, the first 48 hours had Nagelkerke's pseudo-R(2) values of 0.132 and 0.038, respectively), where the information content of S100B peaks at approximately 1 day after trauma. In contrast, although both biomarkers were independently correlated to outcome, NSE had limited additional predictive capabilities in the presence of S100B in multivariate models, due to covariance between the two biomarkers (correlation coefficient 0.673 for AUC 48 hours). Moreover, NSE was to a greater extent correlated to multitrauma the first 48 hours following injury, whereas the effect of extracerebral trauma on S100B levels appears limited to the first 12 hours.

CONCLUSIONS: While both biomarkers are independently correlated to long-term functional outcome, S100B is found a more accurate outcome predictor and possibly a more clinically useful biomarker than NSE for TBI patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app