Automatic detection of microaneurysms in retinal fundus images

Bo Wu, Weifang Zhu, Fei Shi, Shuxia Zhu, Xinjian Chen
Computerized Medical Imaging and Graphics: the Official Journal of the Computerized Medical Imaging Society 2017, 55: 106-112
Diabetic retinopathy (DR) is one of the leading causes of new cases of blindness. Early and accurate detection of microaneurysms (MAs) is important for diagnosis and grading of diabetic retinopathy. In this paper, a new method for the automatic detection of MAs in eye fundus images is proposed. The proposed method consists of four main steps: preprocessing, candidate extraction, feature extraction and classification. A total of 27 characteristic features which contain local features and profile features are extracted for KNN classifier to distinguish true MAs from spurious candidates. The proposed method has been evaluated on two public database: ROC and e-optha. The experimental result demonstrates the efficiency and effectiveness of the proposed method, and it has the potential to be used to diagnose DR clinically.


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"