Add like
Add dislike
Add to saved papers

Treatment of Ni-EDTA containing wastewater by electrocoagulation using iron scraps packed-bed anode.

Chemosphere 2016 December
The unique electrocoagulator proposed in this study is highly efficient at removing Ni-EDTA, providing a potential remediation option for wastewater containing lower concentrations of Ni-EDTA (Ni ≤ 10 mg L(-1)). In the electrocoagulation (EC) system, cylindrical graphite was used as a cathode, and a packed-bed formed from iron scraps was used as an anode. The results showed that the removal of Ni-EDTA increased with the application of current and favoured acidic conditions. We also found that the iron scrap packed-bed anode was superior in its treatment ability and specific energy consumption (SECS) compared with the iron rod anode. In addition, the packed density and temperature had a large influence on the energy consumption (ECS). Over 94.3% of Ni and 95.8% of TOC were removed when conducting the EC treatment at an applied current of 0.5 A, initial pH of 3, air-purged rate 0.2 L min(-1), anode packed density of 400 kg m(-3) temperature of 313 K and time of 30 min. SEM analysis of the iron scraps indicated that the specific area of the anode increased after the EC. The XRD analysis of flocs produced during EC revealed that hematite (α-Fe2O3) and magnetite (Fe3O4) were the main by-products under aerobic and anoxic conditions, respectively. A kinetic study demonstrated that the removal of Ni-EDTA followed a first-order model with the current parameters. Moreover, the removal efficiency of real wastewater was essentially consistent with that of synthetic wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app