Add like
Add dislike
Add to saved papers

Rosuvastatin postconditioning protects isolated hearts against ischemia-reperfusion injury: The role of radical oxygen species, PI3K-Akt-GSK-3β pathway, and mitochondrial permeability transition pore.

AIMS: Glycogen synthase kinase-3β (GSK-3β) and mitochondrial permeability transition pore (mPTP) play an important role in myocardial ischemia-reperfusion injury. The aim of this study was to investigate whether postconditioning with rosuvastatin is able to reduce myocardial ischemia-reperfusion injury and clarify the potential mechanisms.

METHODS: Isolated rat hearts underwent 30 minutes of ischemia and 60 minutes of reperfusion in the presence or absence of rosuvastatin (1-50 nmol/L). The activity of signaling pathway was determined by Western blot analysis, and Ca(2+) -induced mPTP opening was assessed by the use of a potentiometric method.

RESULTS: Rosuvastatin significantly reduced myocardial infarct size and improved cardiac function at 5 and 10 nmol/L. Protection disappeared at higher concentration and reverted to increased damage at 50 nmol/L. At 5 nmol/L, rosuvastatin increased the phosphorylation of protein kinase B (Akt) and GSK-3β, concomitant with a higher Ca(2+) load required to open the mPTP. Rosuvastatin postconditioning also significantly increased superoxide dismutase activity and reduced malondialdehyde and radical oxygen species level. LY294002, phosphatidylinositol-3-kinase (PI3K) inhibitors, abolished these protective effects of rosuvastatin postconditioning.

CONCLUSION: Rosuvastatin prevents myocardial ischemia-reperfusion injury by inducing phosphorylation of PI3K-Akt and GSK-3β, preventing oxidative stress and subsequent inhibition of mPTP opening.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app