Add like
Add dislike
Add to saved papers

Effect of an Unstable Load on Primary and Stabilizing Muscles During the Bench Press.

Ostrowski, SJ, Carlson, LA, and Lawrence, MA. Effect of an unstable load on primary and stabilizing muscles during the bench press. J Strength Cond Res 31(2): 430-434, 2017-Unstable resistance exercises are performed to increase activity of stabilizing muscles. The premise is that this increase in activity will yield greater strength gains than traditional resistance exercises. The purpose of this study was to determine if an unstable load increases muscle activity of stabilizing muscles during a bench press as compared with a standard bench press with a typical load. Fifteen resistance-trained males (age 24.2 ± 2.7 years, mass 84.8 ± 12.0 kg, height 1.77 ± 0.05 m, weight lifting experience 9.9 ± 3.4 years, and bench press 1 repetition maximum [1RM] 107.5 ± 25.9 kg) volunteered for this study. Subjects pressed 2 sets of 5 repetitions in both stable (75% 1RM) and unstable (60% 1RM) conditions using a standard barbell and a flexible Earthquake bar, respectively. Surface electromyography was used to detect muscle activity of primary movers (pectoralis major, anterior deltoid, and triceps) and stabilizing musculature (latissimus dorsi, middle and posterior deltoid, biceps brachii, and upper trapezius). Muscle activity was compared using a multivariate analysis of variance to determine significant (p ≤ 0.05) phase and condition differences. The right and left biceps and the left middle deltoid were significantly more active in the unstable condition. Some of the stabilizing muscles were found to be significantly more active in the unstable condition with 15% less weight. Therefore, bench pressing with an unstable load appears promising in activating stabilizing musculature compared with pressing a typical barbell.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app