Add like
Add dislike
Add to saved papers

Biologically Inspired Polydopamine Capped Gold Nanorods for Drug Delivery and Light-Mediated Cancer Therapy.

Multifunctional drug delivery and combined multimodal therapy strategies are very promising in tumor theranostic applications. In this work, a simple and versatile nanoplatform based on biologically inspired polydopamine capped gold nanorods (GNR-PDA) is developed. Dopamine, a well-known neurotransmitter associated with many neuronal disorders, can undergo self-polymerization on the surface of GNRs to form a stable PDA shell. Its unique molecular adsorption property, as well as its high chemical stability and biocompatibility, facilitate GNR-PDA as an ideal candidate for drug delivery. Methylene blue (MB) and doxorubicin (DOX) are directly adsorbed on GNR-PDA via electrostatic and/or π-π stacking interactions, forming GNR-PDA-MB and GNR-PDA-DOX nanocomposites, respectively. The GNR-PDA-MB can generate reactive oxygen species (ROS, from MB) or hyperthermia (from GNR-PDA) with high efficiency under deep-red/NIR laser irradiation, while the GNR-PDA-DOX exhibits light-enhanced drug release under NIR laser irradiation. The combined dual-modal light-mediated therapy, by using GNR-PDA-MB [photodynamic/photothermal therapy (PDT/PTT)] and GNR-PDA-DOX (Chemo/PTT), is carried out and shows remarkable cancer cell killing efficiency in vitro and significant suppression of tumor growth in vivo, which are much more distinct than any single-modal therapy strategy. Our work illustrates that GNR-PDA could be a promising nanoplatform for multifunctional drug delivery and multimodal tumor theranostics in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app