Copper-Based Metal-Organic Porous Materials for CO 2 Electrocatalytic Reduction to Alcohols

Jonathan Albo, Daniel Vallejo, Garikoitz Beobide, Oscar Castillo, Pedro Castaño, Angel Irabien
ChemSusChem 2017 March 22, 10 (6): 1100-1109
The electrocatalytic reduction of CO2 has been investigated using four Cu-based metal-organic porous materials supported on gas diffusion electrodes, namely, (1) HKUST-1 metal-organic framework (MOF), [Cu3 (μ6 -C9 H3 O6 )2 ]n ; (2) CuAdeAce MOF, [Cu3 (μ3 -C5 H4 N5 )2 ]n ; (3) CuDTA mesoporous metal-organic aerogel (MOA), [Cu(μ-C2 H2 N2 S2 )]n ; and (4) CuZnDTA MOA, [Cu0.6 Zn0.4 (μ-C2 H2 N2 S2 )]n . The electrodes show relatively high surface areas, accessibilities, and exposure of the Cu catalytic centers as well as favorable electrocatalytic CO2 reduction performance, that is, they have a high efficiency for the production of methanol and ethanol in the liquid phase. The maximum cumulative Faradaic efficiencies for CO2 conversion at HKUST-1-, CuAdeAce-, CuDTA-, and CuZnDTA-based electrodes are 15.9, 1.2, 6, and 9.9 %, respectively, at a current density of 10 mA cm-2 , an electrolyte-flow/area ratio of 3 mL min cm-2 , and a gas-flow/area ratio of 20 mL min cm-2 . We can correlate these observations with the structural features of the electrodes. Furthermore, HKUST-1- and CuZnDTA-based electrodes show stable electrocatalytic performance for 17 and 12 h, respectively.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"