JOURNAL ARTICLE

Identification of a stable major-effect QTL (Parth 2.1) controlling parthenocarpy in cucumber and associated candidate gene analysis via whole genome re-sequencing

Zhe Wu, Ting Zhang, Lei Li, Jian Xu, Xiaodong Qin, Tinglin Zhang, Li Cui, Qunfeng Lou, Ji Li, Jinfeng Chen
BMC Plant Biology 2016 August 23, 16 (1): 182
27553196

BACKGROUND: Parthenocarpy is an important trait for yield and quality in many plants. But due to its complex interactions with genetic and physiological factors, it has not been adequately understood and applied to breeding and production. Finding novel and effective quantitative trait loci (QTLs) is a critical step towards understanding its genetic mechanism. Cucumber (Cucumis sativus L.) is a typical parthenocarpic plant but the QTLs controlling parthenocarpy in cucumber were not mapped on chromosomes, and the linked markers were neither user-friendly nor confirmed by previous studies. Hence, we conducted a two-season QTL study of parthenocarpy based on the cucumber genome with 145 F2:3 families derived from a cross between EC1 (a parthenocarpic inbred line) and 8419 s-1 (a non-parthenocarpic inbred line) in order to map novel QTLs. Whole genome re-sequencing was also performed both to develop effective linked markers and to predict candidate genes.

RESULTS: A genetic linkage map, employing 133 Simple Sequence Repeats (SSR) markers and nine Insertion/Deletion (InDel) markers spanning 808.1 cM on seven chromosomes, was constructed from an F2 population. Seven novel QTLs were identified on chromosomes 1, 2, 3, 5 and 7. Parthenocarpy 2.1 (Parth2.1), a QTL on chromosome 2, was a major-effect QTL with a logarithm of odds (LOD) score of 9.0 and phenotypic variance explained (PVE) of 17.0 % in the spring season and with a LOD score of 6.2 and PVE of 10.2 % in the fall season. We confirmed this QTL using a residual heterozygous line97-5 (RHL97-5). Effectiveness of linked markers of the Parth2.1 was validated in F3:4 population and in 21 inbred lines. Within this region, there were 57 genes with nonsynonymous SNPs/InDels in the coding sequence. Based on further combined analysis with transcriptome data between two parents, CsARF19, CsWD40, CsEIN1, CsPPR, CsHEXO3, CsMDL, CsDJC77 and CsSMAX1 were predicted as potential candidate genes controlling parthenocarpy.

CONCLUSIONS: A major-effect QTL Parth2.1 and six minor-effect QTLs mainly contribute to the genetic architecture of parthenocarpy in cucumber. SSR16226 and Indel-T-39 can be used in marker-assisted selection (MAS) of cucumber breeding. Whole genome re-sequencing enhances the efficiency of polymorphic marker development and prediction of candidate genes.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
27553196
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"