JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

FDA regulations regarding iodine addition to foods and labeling of foods containing added iodine.

The US Food and Drug Administration (FDA) regulates the addition of iodine to infant formulas, the iodization of salt, and the addition of salt and iodine to foods. The required amount of iodine in infant formulas is based on caloric content, and the label must provide the iodine content per 100 kcal. Cuprous iodide and potassium iodide may be added to table salt as a source of dietary iodine at a maximum amount of 0.01%; if added, the label must indicate that the salt is iodized. Table salt to which iodine has not been added must bear the statement, "This salt does not supply iodide, a necessary nutrient." If a nutrient is to be appropriately added to a food for the purpose of correcting a dietary insufficiency, there should be sufficient scientific information available to demonstrate a nutritional deficiency and/or identify a public health problem. Furthermore, the population groups that would benefit from the proposed fortification should be identified. If iodine is added to a food, the percent Daily Value of iodine must be listed. There are no FDA regulations governing ingredient standards for dietary supplements. As a result, some dietary supplements include iodine and others do not. If a supplement contains iodine, the Supplement Facts label must list iodine as a nutrient ingredient. If iodine is not listed on the Supplement Facts label, then it has not been added. There are similarities between the FDA, which establishes US food regulations and policies, and the Codex Alimentarius (Codex), which develops international food standards and guidelines under the aegis of the FAO and the WHO. Both the FDA and Codex call for the labeling of table salt to indicate fortification with iodine, voluntary labeling of iodine on foods, and a Daily Value (called a Nutrient Reference Value by Codex) of 150 μg for iodine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app