Add like
Add dislike
Add to saved papers

Proarrhythmic mechanisms of the common anti-diarrheal medication loperamide: revelations from the opioid abuse epidemic.

Loperamide is a μ-opioid receptor agonist commonly used to treat diarrhea and often available as an over-the-counter medication. Recently, numerous reports of QRS widening accompanied by dramatic QT interval prolongation, torsades de pointe arrhythmia, and death have been reported in opioid abusers consuming large amounts of the drug to produce euphoria or prevent opiate withdrawal. The present study was undertaken to determine the mechanisms of this cardiotoxicity. Using whole-cell patch clamp electrophysiology, we tested loperamide on the cloned human cardiac sodium channel (Nav1.5) and the two main repolarizing cardiac K(+) channels cloned from the human heart: KvLQT1/minK and the human ether-a-go-go-related gene (hERG) channel. Loperamide inhibited Nav1.5 with IC50 values of 297 and 239 nM at holding potentials of -90 and -70 mV, respectively. Loperamide was weakly active on KvLQT1/minK producing 17 and 65 % inhibition at concentrations of 1 and 10 μM, respectively. Conversely, loperamide was found to be a very high affinity inhibitor of the hERG channel with an IC50 value of 89 nM at room temperature and 33 nM when measured at physiological temperature. The QRS and QT interval prolongation and the attending arrhythmias, produced by loperamide, derive from high affinity inhibition of Nav1.5 and especially hERG. Since the drug has been widely available and safely used as directed for many years, we believe that the potent inhibition loperamide possesses for cardiac ion channels has only been uncovered because of the excessive misuse of the drug as a consequence of the recent opioid abuse epidemic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app