Add like
Add dislike
Add to saved papers

TGF-β1 monoclonal antibody: Assessment of embryo-fetal toxicity in rats and rabbits.

A humanized monoclonal antibody targeting transforming growth factor β1 (TGF-β1 mab) has been used in development for the treatment of chronic kidney disease. Embryo-fetal development studies were conducted in rats and rabbits using 30 and 25 animals per group, respectively. The TGF-β1 mab was administered subcutaneously to rats at 0, 2, or 50 mg/kg/dose on gestation days (GDs) 6, 10, and 14 and intravenously to rabbits at 0 or 3 mg/kg/dose on GDs 7, 12 to 19, and at 30 mg/kg/dose on GDs 7, 12, 14, 16, and 18. Maternal reproductive endpoints and fetal viability, weight, and morphology were evaluated. There was no indication of maternal or embryo-fetal toxicity in the rat. Effects in the rabbit were limited to the fetus where the 30 mg/kg TGF-β1 mab dose produced a slight decrease in fetal weight and an increase in the incidence of retrocaval ureter and an absent and/or malpositioned kidney/ureter in two fetuses. In conclusion, TGF-β1 mab produced no adverse maternal or embryo-fetal findings in rats when administered ≤50 mg/kg on GDs 6, 10, and 14. TGF-β1 mab did not demonstrate maternal toxicity or embryo-fetal lethality at doses as high as 30 mg/kg when administered on GDs 7, 12, 14, 16, and 18 in rabbits. Fetal growth and morphology were affected only at 30 mg/kg; thus, the no observed adverse effect level was 3 mg/kg in rabbits. The margin of safety for both rats and rabbits was ≥37-fold the clinical exposure level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app