Add like
Add dislike
Add to saved papers

Alkali modified hydrochar of grape pomace as a perspective adsorbent of Pb(2+) from aqueous solution.

Hydrochar produced via hydrothermal carbonization of grape pomace was considered as novel sorbent of Pb(2+) from aqueous solution. In order to enhance the adsorption capacity, hydrochar was chemically modified using 2 M KOH solution. Both materials were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction technique. Batch experiments were performed to examine the effect of sorbent dosage, pH and contact time. Obtained results showed that the KOH treatment increased the sorption capacity of hydrochar from 27.8 mg g(-1) up to 137 mg g(-1) at pH 5. Adsorption of lead on either of the materials was achieved through ion-exchange mechanism, chemisorption and Pb(2+)-π interaction. The Sips isotherm model gave the best fit with the experimental data obtained for Pb(2+) sorption using activated hydrochar. The adsorption kinetic followed a pseudo second-order model. Thermodynamic parameters implied that the Pb(2+) binding for hydrochar surface was spontaneous and exothermic process. Findings from this work suggest that the hydrothermal carbonization is a promising route for production of efficient Pb (2+) sorbents for wastewater treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app