Add like
Add dislike
Add to saved papers

Phytochemical, antioxidant and hepatoprotective effects of Alnus nitida bark in carbon tetrachloride challenged Sprague Dawley rats.

BACKGROUND: Alnus nitida (Spach) Endl. is traditionally used for inflammatory disorders. Diarylheptanoids constituents having diverse therapeutically importance including hepato-protective was reported in A. nitida. The aim of this study was to explore the antioxidant and hepato-protective profile of A. nitida stem bark's crude methanol extract (ANM).

METHODS: Crude methanol extract of A. nitida stem bark and its derived fractions were assessed for phytochemical classes and in vitro antioxidant profiling by multidimensional assays. Hepato-protective assessment of ANM was investigated on rats, which were made hepatotoxic using carbon tetrachloride (CCl4). Additionally HPLC-DAD analysis of ANM, and its derived ethyl acetate and aqueous fraction was carried out to determine the presence of active constituents.

RESULTS: Qualitative analysis of crude extract-and its fractions depicted the presence of terpenoids, saponins, coumarins, phenols and flavonoids. Maximum quantity of total phenolic content (TPC) and total flavonoid content (TFC) was recorded in ANM and its derived fractions; n-hexane (ANH), chloroform (ANC), ethyl acetate (ANE) and the residual aqueous (ANA). ANM exhibited the best total antioxidant capacity, total reducing power, and scavenging of DPPH and OH radicals. ANE and ANA exhibited strong scavenging potential for iron chelation, nitric oxide and β-carotene bleaching assay. ANM treatment converse the activities of serum-marker enzymes and lipid profile, altered by CCl4 treatment in rat. CCl4 induced hepatic-cirrhosis in rat resulted in decrease of antioxidant enzyme activities such as catalase, peroxidase, superoxide dismutase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase-which were restored towards the normal level with ANM. Similarly diminished level of reduced glutathione while enhanced level of lipid peroxides, hydrogen peroxide and nitrite in liver of cirrhotic rats was normalized by treatment of ANM. The histopathological studies of liver tissues also represented that ANM possessed the hepato-protective activity. HPLC-DAD analysis against eight known standards confirmed the presence of gallic acid, catechin and rutin in ANM and in ANA while in ANE gallic acid was only detected.

CONCLUSION: Based on the results of antioxidants, restoration of various antioxidant enzymes and histopathological studies, the recent study concludes that antioxidant potential of A. nitida bark might protect the liver damages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app