Diffusion tensor imaging MR neurography for the detection of polyneuropathy in type 1 diabetes

Michael Vaeggemose, Mirko Pham, Steffen Ringgaard, Hatice Tankisi, Niels Ejskjaer, Sabine Heiland, Per L Poulsen, Henning Andersen
Journal of Magnetic Resonance Imaging: JMRI 2017, 45 (4): 1125-1134

PURPOSE: To evaluate if diffusion tensor imaging MR neurography (DTI-MRN) can detect lesions of peripheral nerves in patients with type 1 diabetes.

MATERIALS AND METHODS: Eleven type 1 diabetic patients with polyneuropathy (DPN), 10 type 1 diabetic patients without polyneuropathy (nDPN), and 10 healthy controls (HC) were investigated with a 3T MRI scanner. Clinical examinations, nerve-conduction studies, and vibratory-perception thresholds determined the presence of DPN. DTI-MRN (voxel size: 1.4 × 1.4 × 3 mm3 ; b-values: 0, 800 s/mm2 ) covered proximal (sciatic nerve) and distal regions of the lower extremity (tibial nerve). Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were calculated and compared to T2 -relaxometry and proton-spin density obtained from a multiecho turbo spin echo (TSE) sequence. Furthermore, we evaluated DTI reproducibility, repeatability, and diagnostic accuracy.

RESULTS: DTI-MRN could accurately discriminate between DPN, nDPN, and HC. The proximal FA was lowest in DPN (DPN 0.37 ± 0.06; nDPN 0.47 ± 0.03; HC 0.49 ± 0.06; P < 0.01). In addition, distal FA was lowest in DPN (DPN 0.31 ± 0.05; nDPN 0.41 ± 0.07; HC 0.43 ± 0.08; P < 0.01). Likewise, proximal ADC was highest in DPN (DPN 1.69 ± 0.25 × 10-3 mm2 /s; nDPN 1.50 ± 0.06 × 10-3 mm2 /s; HC 1.42 ± 0.12 × 10-3 mm2 /s; P < 0.01) as was distal ADC (DPN 1.87 ± 0.45 × 10-3 mm2 /s; nDPN 1.59 ± 0.19 × 10-3 mm2 /s; HC 1.57 ± 0.26 × 10-3 mm2 /s; P = 0.09). The combined interclass-correlation (ICC) coefficient of DTI reproducibility and repeatability was high in the sciatic nerve (ICC: FA = 0.86; ADC = 0.85) and the tibial nerve (ICC: FA = 0.78; ADC = 0.66). T2 -relaxometry and proton-spin-density did not enable detection of neuropathy.

CONCLUSION: DTI-MRN accurately detects DPN by lower nerve FA and higher ADC. These alterations are likely to reflect proximal and distal nerve fiber pathology.

LEVEL OF EVIDENCE: 1 J. Magn. Reson. Imaging 2017;45:1125-1134.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"