Add like
Add dislike
Add to saved papers

Above vs. belowground plant biomass along a barrier island: Implications for dune stabilization.

Coastal regions are inherently and increasingly vulnerable and geomorphologically unstable, yet are invaluable economic and residential hubs. Dunes are dynamic buffers to erosion and the most natural, economical, and effective defense for coastal communities. Vegetation is integral to dune structure as it facilitates accretion and stabilization. Differences in the vegetation and root density likely translate to variability in coastal erosion prevention, but this notion has been largely unconsidered. We directly compared stabilizing factors, depth and density, of the root systems of two dominant mid-Atlantic dune plant species, native American beach grass (Ammophila breviligulata) and invasive Asiatic sand sedge (Carex kobomugi). Despite high plant density, C. kobomugi is targeted for removal in restoration efforts as its roots are assumed to provide less effective stabilization than A. breviligulata. We collected 30 cores and hand dug 14 A. breviligulata ramets at Island Beach State Park, New Jersey to examine biomass, root:shoot ratios, and root density. C. kobomugi had a more extensive root system with a root:shoot ratio of 11.36:1 compared to 1.62:1 for A. breviligulata. Similarly, cores 60 cm deep and 7.6 cm wide were sufficient to attain fully intact A. breviligulata roots, which did not extend deeper than 40 cm, but insufficient for C. kobomugi roots which extended beyond the sampling system vertically and horizontally. Scaling these findings to m(-2), aboveground biomass is relatively equal, but C. kobomugi had over 700% more root mass m(-2) than A. breviligulata. These results have strong implications for dune management. The root system of C. kobomugi may be better adapted to stabilize dunes and thus protect coastal areas during small and large-scale perturbations than previously supposed. This is a unique situation whereby the creation of monocultures will hyperstabilize dunes and make them more resistant to erosion at the cost of reduced biodiversity within the framework of resiliency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app