Add like
Add dislike
Add to saved papers

Phosphorescent PtAu2 Complexes with Differently Positioned Carbazole-Acetylide Ligands for Solution-Processed Organic Light-Emitting Diodes with External Quantum Efficiencies of over 20.

The utilization of phosphorescent metal cluster complexes as new types of emitting materials in organic light-emitting diodes (OLEDs) is becoming an alternative and viable approach for achieving high-efficiency electroluminescence. We report herein the design of cationic PtAu2 cluster complexes with differently positioned 9-phenylcarbazole-acetylides to serve as phosphorescent emitters in OLEDs. The rigid structures of PtAu2 complexes cause intense phosphorescence with quantum yields of over 85%, which originates from (3)[π(phenylcarbazole-acetylide) → π*(dpmp)] ligand-to-ligand and (3)[π(phenylcarbazole-acetylide) → p/s(PtAu2)] ligand-to-metal charge-transfer triplet excited states. When 8 wt % PtAu2 is doped to blended host materials of TCTA and OXD-7 (2:1 weight ratio) as light-emitting layers, solution-processed OLEDs give a current efficiency of 78.2 cd A(-1) and an external quantum efficiency (EQE) of 21.5% at a practical luminance of 1029 cd m(-2) with a slow efficiency roll-off upon increasing luminance. This represents the best device performance and the highest efficiency recorded at practical luminance for solution-processed OLEDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app