CLINICAL TRIAL
COMPARATIVE STUDY
JOURNAL ARTICLE
Cystatin C-Creatinine Based Glomerular Filtration Rate Equation in Obese Chronic Kidney Disease Patients: Impact of Deindexation and Gender.
BACKGROUND: Cystatin C is considered an alternative to creatinine to estimate glomerular filtration rate (GFR). However, studies have reported that increased adiposity is associated with a higher level of circulating cystatin C questioning the performance of estimation of GFR using cystatin C in obese subjects.
METHODS: We prospectively included 166 obese stages 1-5 chronic kidney disease (CKD) patients between 2013 and 2015. GFR was measured with a reference method without (measured GFR [mGFR]) and with adjustment to body surface area (mGFRr) and estimated (eGFR) or de-indexed eGFR using the Chronic Kidney Disease and Epidemiology (CKD-EPI) equation using creatinine (CKD-EPIcreat), cystatin (CKD-EPIcyst) and the combination of cystatin and creatinine (CKD-EPIcyst-creat).
RESULTS: The biases between mGFR and de-indexed CKD-EPIcyst-creat were significantly lower than de-indexed CKD-EPIcreat (p = 0.001). Accuracies were significantly better with de-indexed CKD-EPIcyst-creat compared to CKD-EPIcreat and CKD-EPIcyst, respectively (p = 0.04 and 0.03). Bland and Altman plot showed a great dispersion of all formulae when patients had a GFR >60 ml/min. Interestingly, there is a gender difference; biases, precisions and accuracies of de-indexed CKD-EPIcyst-creat were significantly lower in obese women. These results may be related to a difference in the change of body composition during obesity in men versus women and in fact only waist circumference (WC) was positively and significantly correlated with cystatin C (p < 0.0001) whereas body mass index (BMI; p = 0.3) was not; bias for CKD-EPIcyst-creat was related with WC.
CONCLUSION: Cystatin C-creatinine-based GFR equations outperform creatinine-based formula in obese CKD patients especially those with BMI ≥35 and in obese women.
METHODS: We prospectively included 166 obese stages 1-5 chronic kidney disease (CKD) patients between 2013 and 2015. GFR was measured with a reference method without (measured GFR [mGFR]) and with adjustment to body surface area (mGFRr) and estimated (eGFR) or de-indexed eGFR using the Chronic Kidney Disease and Epidemiology (CKD-EPI) equation using creatinine (CKD-EPIcreat), cystatin (CKD-EPIcyst) and the combination of cystatin and creatinine (CKD-EPIcyst-creat).
RESULTS: The biases between mGFR and de-indexed CKD-EPIcyst-creat were significantly lower than de-indexed CKD-EPIcreat (p = 0.001). Accuracies were significantly better with de-indexed CKD-EPIcyst-creat compared to CKD-EPIcreat and CKD-EPIcyst, respectively (p = 0.04 and 0.03). Bland and Altman plot showed a great dispersion of all formulae when patients had a GFR >60 ml/min. Interestingly, there is a gender difference; biases, precisions and accuracies of de-indexed CKD-EPIcyst-creat were significantly lower in obese women. These results may be related to a difference in the change of body composition during obesity in men versus women and in fact only waist circumference (WC) was positively and significantly correlated with cystatin C (p < 0.0001) whereas body mass index (BMI; p = 0.3) was not; bias for CKD-EPIcyst-creat was related with WC.
CONCLUSION: Cystatin C-creatinine-based GFR equations outperform creatinine-based formula in obese CKD patients especially those with BMI ≥35 and in obese women.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app