Add like
Add dislike
Add to saved papers

MiR-9 promotes osteoblast differentiation of mesenchymal stem cells by inhibiting DKK1 gene expression.

The aim of this study is to investigate the role of miR-9 and its mechanism on the osteoblast differentiation of mesenchymal stem cells. Real-time PCR and western blotting were used to study gene expression. Assay of Alkaline phosphatase activity and alizarin red staining were used to examine osteoblast differentiation. Transfection of miR-9 mimics or lent-shmiR-9 was used to modulate the level of miR-9 in C2C12. Overexpression of miR-9 in C2C12 cells stimulated alkaline phosphatase activity and osteoblast mineralization, as well as the expression of osteoblast marker genes Col I, Ocn and Bsp. Gene silencing of miR-9 in C2C12 resulted in the suppression of alkaline phosphatase activity and osteoblast mineralization, as well as the expression of Col I, Ocn and Bsp. DKK1 mRNA was not affected by miR-9 overexpression, however, DKK1 protein was significantly decreased. Moreover, DKK1 3'-UTR mediated transcriptional luciferase activity was also significantly suppressed by miR-9 overexpression. DKK1 mRNA was not affected by miR-9 gene silencing, however, DKK1 protein was significantly stimulated. Moreover, DKK1 3'-UTR mediated transcriptional luciferase activity was significantly stimulated by miR-9 gene silencing, and suppressed by miR-9 overexpression, however, DKK1 3'-UTR mutant mediated luciferase activity was unaffected. The siRNA derived gene silencing of DKK1 blocked the inhibiting effect of shmiR-9 on the expression of alkaline phosphatase; and blocked the inhibiting effect of shmiR-9 on the expression of ColI, Ocn and Bsp. MiR-9 promotes osteoblast differentiation of mesenchymal cell C2C12 by suppressing the gene expression of DKK1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app