JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Long non-coding RNA CRNDE promotes tumor growth in medulloblastoma.

OBJECTIVE: Medulloblastoma is the most common malignant brain tumor in children. Despite remarkable advances over the past decades, a novel therapeutic strategy is urgently required to increase long-term survival. This study aimed to understand the role of a long non-coding RNA (lncRNA), colorectal neoplasia differentially expressed (CRNDE), in medulloblastoma tumor growth.

MATERIALS AND METHODS: The transcript level of CRNDE was initially examined in dissected clinical tissues and cultured cancerous cells. Effects of CRNDE knockdown on cell viability and colony formation in vitro were assessed using the CCK-8 and colony formation assays, respectively. Cell cycle progression and survival were also determined after CRNDE knockdown. A xenograft mouse model of human medulloblastoma was established by injecting nude mice with medulloblastoma cells stably depleted of CRNDE expression.

RESULTS: Our data suggest that transcript levels of CRNDE are elevated in clinical medulloblastoma tissues instead of in adjacent non-cancerous tissues. Knockdown of CRNDE significantly slowed cell proliferation rates and inhibited colony formation in Daoy and D341 cells. Tumor growth in vivo was also inhibited after CRNDE knockdown. Moreover, after knockdown of CRNDE, cell cycle progression was arrested in S phase and apoptosis was promoted by 15-20% in Daoy and D341 cells. In vivo data further showed that proliferating cell nuclei antigen (PCNA) was decreased, whereas the apoptosis initiator cleaved-caspase-3 was increased upon CRNDE knockdown in cancerous tissues from the mouse model.

CONCLUSIONS: All these data suggest that CRNDE promotes tumor growth both in vitro and in vivo. This growth-promotion effect might be achieved via arresting cell cycle progression and inhibiting apoptosis. Therapeutics against CRNDE may be a novel strategy for the treatment of medulloblastoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app