JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Supramolecular guest relay using host-protein nanocavities: an application of host-induced guest protonation.

Molecular BioSystems 2016 August 17
Small drug molecules and other important metabolites are delivered via a suitable carrier protein-mediated transport through a specific receptor. The process is highly coordinated and associated with complexation induced properties of deliverable molecules. To get a molecular insight, in this report, we tried to mimic the delivery process to know how the carrier protein relocates the drug molecule from the macrocyclic host cavity to its binding pocket and how the electronic and the chemical properties of the guest get altered. Bovine and human serum albumin (BSA and HSA) were used as the model carrier proteins which can snatch out 6-propanoyl-2-(N,N-dimethylamino)naphthalene (PRO), dye used as a drug model (known to bind at the drug-binding pocket of the carrier protein), from the cucurbit[7]uril (CB7) cavity, a potential drug delivery carrier. Prior to performing the fluorescence-based bio-supramolecular relocation assay using BSA and HSA, CB7 and PRO, we have investigated the effect of CB7 encapsulation and protonation on the fluorescence properties of PRO. A significant shift in the pKa value from 3.4 to 6.6 (ca. 3.2 logarithmic units) of PRO was observed upon encapsulation with CB7, which causes a huge fluorescence quenching even at neutral pH. The binding affinity of protonated and neutral PRO for CB7 also confirms a 3.2 unit shift in the acid-dissociation constant. A displacement assay using a strong CB7 binder, viz., 1,6-diaminohexane, confirms encapsulation of PRO in the CB7 cavity. Encapsulation of neutral PRO by CB7 shows a significant fluorescence enhancement accompanied by a ∼35 nm blue shift in the emission maxima.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app