JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Selective and Efficient Reduction of Carbon Dioxide to Carbon Monoxide on Oxide-Derived Nanostructured Silver Electrocatalysts.

Angewandte Chemie 2016 August 9
In this work, the selective electrocatalytic reduction of carbon dioxide to carbon monoxide on oxide-derived silver electrocatalysts is presented. By a simple synthesis technique, the overall high faradaic efficiency for CO production on the oxide-derived Ag was shifted by more than 400 mV towards a lower overpotential compared to that of untreated Ag. Notably, the Ag resulting from Ag oxide is capable of electrochemically reducing CO2 to CO with approximately 80 % catalytic selectivity at a moderate overpotential of 0.49 V, which is much higher than that (ca. 4 %) of untreated Ag under identical conditions. Electrokinetic studies show that the improved catalytic activity is ascribed to the enhanced stabilization of COOH(.) intermediate. Furthermore, highly nanostructured Ag is likely able to create a high local pH near the catalyst surface, which may also facilitate the catalytic activity for the reduction of CO2 with suppressed H2 evolution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app