Add like
Add dislike
Add to saved papers

Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers.

Oncotarget 2016 July 27
Triple-negative breast cancers (TNBC) are characterized by frequent alterations in the PI3K/AKT/mTOR signaling pathway. In this study, we analyzed PI3K pathway activation in 67 patient-derived xenografts (PDX) of breast cancer and investigated the anti-tumor activity of the mTOR inhibitor everolimus in 15 TNBC PDX with different expression and mutational status of PI3K pathway markers. Expression of the tumor suppressors PTEN and INPP4B was lost in 55% and 76% of TNBC PDX, respectively, while mutations in PIK3CA and AKT1 genes were rare. In 7 PDX treatment with everolimus resulted in a tumor growth inhibition higher than 50%, while 8 models were classified as low responder or resistant. Basal-like, LAR (Luminal AR), mesenchymal and HER2-enriched tumors were present in both responder and resistant groups, suggesting that tumor response to everolimus is not restricted to a specific TNBC subtype. Analysis of treated tumors showed a correlation between tumor response and post-treatment phosphorylation of AKT, increased in responder PDX, while PI3K pathway markers at baseline were not sufficient to predict everolimus response. In conclusion, targeting mTOR decreased tumor growth in 7 out of 15 TNBC PDX tested. Response to everolimus occurred in different TNBC subtypes and was associated with post-treatment increase of P-AKT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app