Add like
Add dislike
Add to saved papers

Transforming growth factor β-related genes in human retinal pigment epithelial cells after tacrolimus treatment.

BACKGROUND: The transforming growth factor β (TGFβ) family plays an important role in the pathogenesis of many diseases, including fibrotic pathologies of the eyes. The difficulties of surgical procedures contribute to the search for new treatment strategies for proliferative vitreoretinopathy. Therefore, the aim of this study was to investigate the expression profile of TGFβ isoforms, their receptors, and TGFβ-related genes in human retinal pigment epithelial cells (RPE) after tacrolimus (FK-506) treatment in the presence or absence of lipopolysaccharide (LPS)-induced inflammation.

METHODS: The expression profile was analyzed using oligonucleotide microarrays and quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) techniques.

RESULTS: Analysis using oligonucleotide microarrays revealed 20 statistically significant differentially expressed TGFβ-related genes after LPS treatment in relation to control cells, and after tacrolimus and LPS treatment in relation to LPS-treated cells. Moreover, our results showed that mRNA levels for TGFβ2 and TGFβR3 after tacrolimus treatment, and for TGFβR3 after tacrolimus and LPS treatment in RPE cells were decreased. In turn, in the presence of LPS-induced inflammation, TGFβ2 mRNA level was increased.

CONCLUSIONS: These results can be important in regard to the treatment of proliferative vitreoretinopathy, pathogenesis of which is associated with processes regulated by TGFβ, such as inflammation, proliferation, epithelial-mesenchymal transition (EMT), and fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app