Add like
Add dislike
Add to saved papers

Treatment of sugarcane vinasse by combination of coagulation/flocculation and Fenton's oxidation.

The efficiency of individual and integrated processes applied to organic matter reduction and biodegradability improvement of a biodigested sugarcane vinasse wastewater was assessed. Strategies considered were Fenton's oxidation (Strategy 1), coagulation/flocculation (Strategy 2) and the combination of both processes (coagulation/flocculation followed by Fenton's reaction) - Strategy 3. It was found that Fenton's oxidation per se allowed reducing the organic matter, increasing the wastewater biodegradability and a non-toxic effluent was generated; however the cost of treatment was very high (86.6 R$/m(3) - 21.2 €/m(3)). Under optimized conditions, coagulation/flocculation provided a slight increase in effluent's biodegradability, toxicity towards Vibrio fischeri was also eliminated and moderate removals of total organic carbon - TOC - (30.5%), biological oxygen demand - BOD5 - (27.9%) and chemical oxygen demand - COD - (43.6%) were achieved; however, the operating costs are much smaller. The use of dissolved iron resulting from coagulation/flocculation (270 mg/L) as catalyst in the second stage - Fenton's oxidation - was shown to be an innovative and economically attractive strategy. Under optimal conditions overall removals of 51.6% for TOC, 45.7% for BOD5 and 69.2% for COD were achieved, and a biodegradable (BOD5:COD ratio = 0.54) and non-toxic effluent was obtained. In order to increase the efficiency of the process but using less hydrogen peroxide, the Fenton's oxidation was performed by gradually adding the oxidant. This procedure allowed to obtain the highest organic matter removal efficiency (as compared with the addition of all hydrogen peroxide at the beginning of the reaction). This way it was possible to minimize the reagent consumption and, consequently, reduce the treatment cost.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app