Add like
Add dislike
Add to saved papers

Transplantation of Human Amniotic Mesenchymal Stem Cells Promotes Functional Recovery in a Rat Model of Traumatic Spinal Cord Injury.

Human amniotic membrane mesenchymal stem cells (hAMSCs) are considered ideal candidate stem cells for cell-based therapy. In this study, we assessed whether hAMSCs transplantation promotes neurological functional recovery in rats after traumatic spinal cord injury (SCI). In addition, the potential mechanisms underlying the possible benefits of this therapy were investigated. Female Sprague-Dawley rats were subjected to SCI using a weight drop device and then hAMSCs, or phosphate-buffered saline (PBS) were immediately injected into the contused dorsal spinal cord at 2 mm rostral and 2 mm caudal to the injury site. Our results indicated that transplanted hAMSCs migrated in the host spinal cord without differentiating into neuronal or glial cells. Compared with the control group, hAMSCs transplantation significantly decreased the numbers of ED1(+) macrophages/microglia and caspase-3(+) cells. In addition, hAMSCs transplantation significantly increased the levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) in the injured spinal cord, and promoted both angiogenesis and axonal regeneration. These effects were associated with significantly improved neurobehavioral recovery in the hAMSCs transplantation group. These results show that transplantation of hAMSCs provides neuroprotective effects in rats after SCI, and could be candidate stem cells for the treatment of SCI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app