JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Posttranslational proteolytic processing of Leda-1/Pianp involves cleavage by MMPs, ADAM10/17 and gamma-secretase.

Leda-1/Pianp is a type I transmembrane protein expressed by CNS cells, murine melanoma cell line B16F10 and rat liver sinusoidal endothelial cells. The early steps of posttranslational modifications of Leda-1/Pianp have been described to include glycosylation and processing by proprotein convertases. Here, we comprehensively characterized the subsequent steps of proteolytic processing of Leda-1/Pianp. For this purpose specific protease inhibitors and cell lines deficient in PS1, PS2, PS1/PS2 and ADAM10/17 were deployed. Leda-1/Pianp was cleaved at numerous cleavage sites within the N-terminal extracellular domain. The sheddases involved included MMPs and ADAM10/17. Ectodomain shedding yielded C-terminal fragments (CTF) of ∼15 kDa. The CTF was further processed by the γ (gamma)-secretase complex to generate the intracellular domain (ICD) of ∼10 kDa. Although PS1 was the dominant intramembrane protease, PS2 was also able to cleave Leda-1/Pianp in the absence of PS1. Thus, Leda-1/Pianp is constitutively processed by proprotein convertases, sheddases including MMPs and ADAM10/17 and intramembrane protease γ-secretase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app