Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Local CXCR4 Upregulation in the Injured Arterial Wall Contributes to Intimal Hyperplasia.

Stem Cells 2016 November
CXCR4 is a stem/progenitor cell surface receptor specific for the cytokine stromal cell-derived factor-1 (SDF-1α). There is evidence that bone marrow-derived CXCR4-expressing cells contribute to intimal hyperplasia (IH) by homing to the arterial subintima which is enriched with SDF-1α. We have previously found that transforming growth factor-β (TGFβ) and its signaling protein Smad3 are both upregulated following arterial injury and that TGFβ/Smad3 enhances the expression of CXCR4 in vascular smooth muscle cells (SMCs). It remains unknown, however, whether locally induced CXCR4 expression in SM22 expressing vascular SMCs plays a role in neointima formation. Here, we investigated whether elevated TGFβ/Smad3 signaling leads to the induction of CXCR4 expression locally in the injured arterial wall, thereby contributing to IH. We found prominent CXCR4 upregulation (mRNA, 60-fold; protein, 4-fold) in TGFβ-treated, Smad3-expressing SMCs. Chromatin immunoprecipitation assays revealed a specific association of the transcription factor Smad3 with the CXCR4 promoter. TGFβ/Smad3 treatment also markedly enhanced SDF-1α-induced ERK1/2 phosphorylation as well as SMC migration in a CXCR4-dependent manner. Adenoviral expression of Smad3 in balloon-injured rat carotid arteries increased local CXCR4 levels and enhanced IH, whereas SMC-specific depletion of CXCR4 in the wire-injured mouse femoral arterial wall produced a 60% reduction in IH. Our results provide the first evidence that upregulation of TGFβ/Smad3 in injured arteries induces local SMC CXCR4 expression and cell migration, and consequently IH. The Smad3/CXCR4 pathway may provide a potential target for therapeutic interventions to prevent restenosis. Stem Cells 2016;34:2744-2757.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app