Mutation Analysis of Cell-Free DNA and Single Circulating Tumor Cells in Metastatic Breast Cancer Patients with High Circulating Tumor Cell Counts

Jacqueline A Shaw, David S Guttery, Allison Hills, Daniel Fernandez-Garcia, Karen Page, Brenda M Rosales, Kate S Goddard, Robert K Hastings, Jinli Luo, Olivia Ogle, Laura Woodley, Simak Ali, Justin Stebbing, R Charles Coombes
Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 2017 January 1, 23 (1): 88-96

PURPOSE: The purpose of this study was to directly compare mutation profiles in multiple single circulating tumor cells (CTC) and cell-free DNA (cfDNA) isolated from the same blood samples taken from patients with metastatic breast cancer (MBC). We aimed to determine whether cfDNA would reflect the heterogeneity observed in 40 single CTCs.

EXPERIMENTAL DESIGN: CTCs were enumerated by CELLSEARCH. CTC count was compared with the quantity of matched cfDNA and serum CA15-3 and alkaline phosphatase (ALP) in 112 patients with MBC. In 5 patients with ≥100 CTCs, multiple individual EpCAM-positive CTCs were isolated by DEPArray and compared with matched cfDNA and primary tumor tissue by targeted next-generation sequencing (NGS) of about 2,200 mutations in 50 cancer genes.

RESULTS: In the whole cohort, total cfDNA levels and cell counts (≥5 CTCs) were both significantly associated with overall survival, unlike CA15-3 and ALP. NGS analysis of 40 individual EpCAM-positive CTCs from 5 patients with MBC revealed mutational heterogeneity in PIK3CA, TP53, ESR1, and KRAS genes between individual CTCs. In all 5 patients, cfDNA profiles provided an accurate reflection of mutations seen in individual CTCs. ESR1 and KRAS gene mutations were absent from primary tumor tissue and therefore likely either reflect a minor subclonal mutation or were acquired with disease progression.

CONCLUSIONS: Our results demonstrate that cfDNA reflects persisting EpCAM-positive CTCs in patients with high CTC counts and therefore may enable monitoring of the metastatic burden for clinical decision-making. Clin Cancer Res; 23(1); 88-96. ©2016 AACR.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"