Add like
Add dislike
Add to saved papers

Caffeic acid attenuates oxidative stress, learning and memory deficit in intra-cerebroventricular streptozotocin induced experimental dementia in rats.

Oxidative stress has been implicated in cognitive decline as seen during normal aging and in sporadic Alzheimer's disease (AD). Caffeic acid, a polyphenolic compound, has been reported to possess potent antioxidant and neuroprotective properties. The role of caffeic acid in experimental dementia is not fully understood. Thus the present study was designed to investigate the therapeutic potential of caffeic acid in streptozotocin (STZ)-induced experimental dementia of Alzheimer's type in rats. Streptozotocin (STZ) was administered intracerebroventrically (ICV) on day 1 and 3 (3mg/kg, ICV bilaterally) in Wistar rats. Caffeic acid was administered (10, 20 and 40mg/kg/day p.o.) 1h following STZ infusion upto 21st day. Morris water maze and object recognition task were used to assess learning and memory in rats. Terminally, acetylcholinesterase (AChE) activity and the levels of oxido-nitrosative stress markers were determined in cortical and hippocampal brain regions of rats. STZ produced significant (p<0.001) learning and memory impairment, oxido-nitrosative stress and cholinergic deficit in rats. Whereas, caffeic acid treatment significantly (p<0.001) and dose dependently attenuated STZ induced behavioral and biochemical abnormalities in rats. The observed cognitive improvement following caffeic acid in STZ treated rats may be due to its antioxidant activity and restoration of cholinergic functions. Our results suggest the therapeutic potential of caffeic acid in cognitive disorders such as AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app