JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Oligomeric Amyloid-β Toxicity Can Be Inhibited by Blocking Its Cellular Binding in Cortical Neuronal Cultures with Addition of the Triphenylmethane Dye Brilliant Blue G.

Accumulation of soluble amyloid β (Aβ) oligomers in the brain has been suggested to cause neurodegeneration associated with Alzheimer's disease (AD). Our previous findings showed that the binding of Aβ trimer and tetramer to neurons is significantly correlated with Aβ-induced neuronal cell death. We propose blocking of neuronal binding of these neurotoxic Aβ oligomers as a therapeutic strategy for preventing this disease. To test this, a nontoxic triphenylmethane dye, Brilliant Blue G (BBG), which has been reported to modulate Aβ aggregation and neurotoxicity, was investigated using mouse primary cortical neuronal cultures treated with photoinduced cross-linked toxic Aβ40 oligomers as well as soluble Aβ40 and Aβ42 peptides. We found that the BBG-induced decrease in Aβ binding resulted in a significant decrease in its neurotoxicity. These findings support our hypothesis that disruption of cellular Aβ binding is a promising therapeutic strategy for combating AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app