Add like
Add dislike
Add to saved papers

Meiofauna communities, nematode diversity and C degradation rates in seagrass (Posidonia oceanica L.) and unvegetated sediments invaded by the algae Caulerpa cylindracea (Sonder).

We investigated meiofauna and sedimentary C cycling in seagrass (Posidonia oceanica) and unvegetated sediments invaded and not invaded by the non-indigenous tropical algae Caulerpa cylindracea. In both habitats, invaded sediments were characterized by higher organic matter contents. No effect was observed for prokaryotes and C degradation rates. In seagrass sediments, C turnover in invaded beds was about half that in not invaded ones. Meiofaunal communities varied significantly among invaded and not invaded grounds only in bare sediments. In both habitats, nematode species richness and assemblage composition were not affected by the algae. The effect of C. cylindracea on the turnover and nestedness components of the Jaccard dissimilarity varied between the two habitats. We show that the presence of C. cylindracea gives rise to variable consequences on meiofauna biodiversity and C cycling in different habitats. We conclude that further studies across different habitats and ecological components are needed to ultimately understand and predict the consequences of C. cylindracea invasion in shallow Mediterranean ecosystems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app