Add like
Add dislike
Add to saved papers

Synthesis and characterization of an A2BC type phthalocyanine and its visible-light-responsive photocatalytic H2 production performance on graphitic carbon nitride.

A highly asymmetric A2BC type zinc phthalocyanine (Zn-di-PcNcTh) has been designed and synthesized. The Zn-di-PcNcTh used a π electron rich thiophene ring in place of the benzenoid rings of phthalocyanine which acted as an electron donor, diphenylphenoxy substituents to retard aggregation and a carboxyl-naphthalene unit as an electron acceptor. The asymmetric phthalocyanine shows a strongly split Q-band and wide spectral absorption in the visible/near-IR light region, which can extend the spectral response region of graphitic carbon nitride (g-C3N4) from ∼450 nm to more than 800 nm. By using it as a sensitizer of 1.0 wt% Pt-loaded graphitic carbon nitride (g-C3N4), the experimental results indicate that Zn-di-PcNcTh-Pt/g-C3N4 shows a H2 production efficiency of 249 μmol h(-1) with an impressive turnover number (TON) of 9960.8 h(-1) under visible light (λ≥ 420 nm) irradiation, much higher than that of pristine Pt/g-C3N4. Owing to the introduction of a highly bathochromic shift of 3,4-dicyanothiophene and the valuable "push-pull" effect from the thiophene (electron donor) to the carboxyl-naphthalene (electron acceptor) unit, Zn-di-PcNcTh/g-C3N4 gives an extremely high apparent quantum yield (AQY) of 2.44%, 3.05%, and 1.53% under 700, 730, and 800 nm monochromatic light irradiation, respectively, under optimized photocatalytic conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app