Add like
Add dislike
Add to saved papers

A Validated Preclinical Animal Model for Primary Bone Tumor Research.

BACKGROUND: Despite the introduction of 21st-century surgical and neoadjuvant treatment modalities, survival of patients with osteosarcoma (OS) has not improved in two decades. Advances will depend in part on the development of clinically relevant and reliable animal models. This report describes the engineering and validation of a humanized tissue-engineered bone organ (hTEBO) for preclinical research on primary bone tumors in order to minimize false-positive and false-negative results due to interspecies differences in current xenograft models.

METHODS: Pelvic bone and marrow fragments were harvested from patients during reaming of the acetabulum during hip arthroplasty. HTEBOs were engineered by embedding fragments in a fibrin matrix containing bone morphogenetic protein-7 (BMP-7) and implanted into NOD-scid mice. After 10 weeks of subcutaneous growth, one group of hTEBOs was harvested to analyze the degree of humanization. A second group was injected with human luciferase-labeled OS (Luc-SAOS-2) cells. Tumor growth was followed in vivo with bioluminescence imaging. After 5 weeks, the OS tumors were harvested and analyzed. They were also compared with tumors created via intratibial injection.

RESULTS: After 10 weeks of in vivo growth, a new bone organ containing human bone matrix as well as viable and functional human hematopoietic cells developed. Five weeks after injection of Luc-SAOS-2 cells into this humanized bone microenvironment, spontaneous metastatic spread to the lung was evident. Relevant prognostic markers such as vascular endothelial growth factor (VEGF) and periostin were found to be positive in OS tumors grown within the humanized microenvironment but not in tumors created in murine tibial bones. Hypoxia-inducible transcription factor-2α (HIF-2α) was detected only in the humanized OS.

CONCLUSIONS: We report an in vivo model that contains human bone matrix and marrow components in one organ. BMP-7 made it possible to maintain viable mesenchymal and hematopoietic stem cells and created a bone microenvironment mimicking human physiology.

CLINICAL RELEVANCE: This novel platform enables preclinical research on primary bone tumors in order to test new treatment options.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app