Add like
Add dislike
Add to saved papers

A comparison of three-dimensional stress distribution and displacement of naso-maxillary complex on application of forces using quad-helix and nickel titanium palatal expander 2 (NPE2): a FEM study.

BACKGROUND: Our objectives are to analyse and to compare the stress distribution and displacement of the craniofacial structures, following the application of forces from quad-helix and Nickel Titanium Palatal Expander-2 (NPE2) using finite element analysis.

METHODS: Three-dimensional finite element models of young dried human skull, quad-helix appliance and NPE2 were constructed, and the initial activation of the expanders was stimulated to carry out the analysis and to evaluate the Von Misses stresses and displacement.

RESULTS: Both the models demonstrated the highest stresses at the mid-palatal suture, with maximum posterior dislocation. The second highest stress was recorded at the fronto-zygomatic suture. The pattern of stress distribution was almost similar in both the groups, but NPE2 revealed lower magnitude stresses than quad-helix. The only exception being quad-helix model showed high stress levels around pterygo-maxillary suture whereas minimal stress around pterygo-maxillary suture was noticed after NPE2 activation. The cusp of the erupting canine and the erupting mesiobuccal cusp of the second molar showed outward, backward and downward displacement signifying increase in their eruption pattern following maxillary expansion.

CONCLUSIONS: Maxillary expansion using quad-helix and NPE2 can be used in posterior crossbite correction in cases where maximum skeletal changes are desirable at a younger age; it is furthermore effective in treating young patients with impacted or displaced teeth. Quad-helix and NPE2 produced acceptable forces for orthopaedic treatment even after being orthodontic appliances; their clinical application should be correctly planned as the effects of these appliances are largely age dependent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app