JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MiR-145 and miR-203 represses TGF-β-induced epithelial-mesenchymal transition and invasion by inhibiting SMAD3 in non-small cell lung cancer cells.

OBJECTIVES: MicroRNAs (miRNAs) have been proved to play important role in development of various cancers, including non-small cell lung cancer (NSCLC). Our previous studies have shown that miR-203 and miR-145 are associated with cellular invasion in NSCLC and nasopharyngeal cancer, respectively. However, the mechanistic role of miR-203 and miR-145 in TGF-β-induced epithelial-mesenchymal transition (EMT) has not yet been elucidated in human cancers, including NSCLC.

MATERIALS AND METHODS: Real-time quantitative reverse transcriptase PCR (qRT-PCR), western blot analysis, luciferase reporter gene assays, small RNA interference and transwell migration and invasion assays were carried on human NSCLC cell lines A549 and 95C. Thirty-six paired NSCLC tissues and adjacent noncancerous lung tissues were collected.

RESULTS: Both miR-145 and miR-203 can directly target the 3'-untranslated region (3'-UTR) of SMAD3, and overexpression of the two miRNAs in NSCLC cells inhibited the expression of SMAD3 mRNA and protein, whereas inhibition of endogenous miR-145 or miR-203 caused an increased expression of SMAD3. Moreover, miR-145 and/or miR-203 repressed TGF-β-induced EMT and attenuated cell migration and invasion in A549 and 95C cells. siRNA-mediated knockdown of SMAD3 copied the phenotype of miR-145 and miR-203 overexpression in A549 and 95C cells.

CONCLUSION: MiR-145 and miR-203 inhibited TGF-β-induced EMT and invasion through repression of SMAD3 in NSCLC cells. Our findings provided insights into the miRNA-based mechanism for controlling TGF-β-induced EMT of NSCLC cells and a strategy for targeted therapy of NSCLC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app