JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Polycyclic aromatic hydrocarbons exposure and lung function decline among coke-oven workers: A four-year follow-up study.

OBJECTIVES: This study aimed to investigate quantitative relationships of urinary PAH metabolites with lung function declines among coke-oven workers.

METHODS: We performed a prospective investigation involving 1243 workers with follow-up periods from 2010 to 2014. Their lung function measurements, including forced vital capacity (FVC), forced expiratory volume in one second (FEV1), the percentage of predicted FVC (FVC%) and FEV1 (FEV1%), FEV1/FVC ratio, and forced expiratory flow between 25% and 75% of vital capacity (FEF25-75), were detected in both baseline (2010) and follow-up study (2014). We also detected the urinary concentrations of 12 PAH metabolites in the baseline study. The relationships between the baseline urinary PAH metabolites and 4-year lung function declines were analyzed by multivariate linear regressions, with adjustment for potential confounders.

RESULTS: We found that the baseline concentrations of urinary 1-hydroxynaphthalene (1-OHNa), 2-OHNa, 2-hydroxyfluorene (2-OHFlu), 9-OHFlu, 1-hydroxyphenanthrene (1-OHPh), 2-OHPh, and ΣOH-PAHs were significantly associated with accelerated decline in FEV1/FVC [all β>0 and false discovery rate (FDR) P<0.05]. Additionally, the baseline levels of urinary 1-OHNa, 1-OHPh, 2-OHPh, 9-OHPh, 1-hydroxypyrene (1-OHP), and ΣOH-PAHs were associated with significantly deeper decline in FEF25-75 (all β>0 and FDR P<0.10). When using backward selection to adjustment for 10 urinary PAH metabolites, the most significant determiner for FEV1/FVC decline was 1-OHNa among nonsmokers and 9-OHFlu among smokers, and the significant determiner for FEF25-75 decline was 9-OHPh among nonsmokers and 1-OHP among smokers.

CONCLUSIONS: This longitudinal study revealed that higher baseline exposure levels of PAHs could lead to greater decline in lung function over a 4-year follow-up.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app