Add like
Add dislike
Add to saved papers

Hierarchical glucocorticoid-endocannabinoid interplay regulates the activation of the nucleus accumbens by insulin.

Here we asked if insulin activation of the nucleus accumbens in vitro is reflected by an increase in (3)H-deoxyglucose ([(3)H]DG) uptake, thus subserving a new model to study molecular mechanisms of central insulin actions. Additionally, we investigated the dependence of this insulin effect on endocannabinoids and corticosteroids, two major culprits in insulin resistance. We found that in acute accumbal slices, insulin (3 and 300nM but not at 0.3nM) produced an increase in [(3)H]DG uptake. The synthetic cannabinoid agonist, WIN55212-2 (500nM) and the glucocorticoid dexamethasone (10μM), impaired insulin (300nM) action on [(3)H]DG uptake. The glucocorticoid receptor (GcR) antagonist, mifepristone (10μM) prevented dexamethasone from inhibiting insulin's action. Strikingly, this anti-insulin action of dexamethasone was also blocked by two CB1 cannabinoid receptor (CB1R) antagonists, O-2050 (500nM) and SR141716A (500nM), as well as by tetrahydrolipstatin (10μM), an inhibitor of diacylglycerol lipases-the enzymes responsible for the synthesis of the endocannabinoid, 2-arachidonoyl-glycerol (2-AG). On the other hand, the blockade of the post-synaptic 2-AG metabolizing enzymes, α,β-serine hydrolase domain 6/12 by WWL70 (1μM) also prevented the action of insulin, probably via increasing endogenous 2-AG tone. Additionally, an anti-insulin receptor (InsR) antibody immunoprecipitated CB1Rs from accumbal homogenates, indicating a physical complexing of CB1Rs with InsRs that supports their functional interaction. Altogether, insulin stimulates glucose uptake in the nucleus accumbens. Accumbal GcR activation triggers the synthesis of 2-AG that in turn binds to the known CB1R-InsR heteromer, thus impeding insulin signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app