Add like
Add dislike
Add to saved papers

What Is the Optimal Setting for a Continuous-Flow Left Ventricular Assist Device in Severe Mitral Regurgitation?

Artificial Organs 2016 November
Excessive left ventricular (LV) volume unloading can affect right ventricular (RV) function by causing a leftward shift of the interventricular septum in patients with mitral regurgitation (MR) receiving left ventricular assist device (LVAD) support. Optimal settings for the LVAD should be chosen to appropriately control the MR without causing RV dysfunction. In this study, we assessed the utility of our electrocardiogram-synchronized rotational speed (RS) modulation system along with a continuous-flow LVAD in a goat model of MR. We implanted EVAHEART devices after left thoracotomy in six adult goats weighing 66.4 ± 10.7 kg. Severe MR was induced through inflation of a temporary inferior vena cava filter placed within the mitral valve. We evaluated total flow (TF; the sum of aortic flow and pump flow [PF]), RV fractional area change (RVFAC) calculated by echocardiography, left atrial pressure (LAP), LV end-diastolic pressure (LVEDP), LV end-diastolic volume (LVEDV), and LV stroke work (LVSW) with a bypass rate (PF divided by TF) of 100% under four conditions: circuit-clamp, continuous mode, co-pulse mode (increased RS during systole), and counter-pulse mode (increased RS during diastole). TF tended to be higher in the counter-pulse mode. Moreover, RVFAC was significantly higher in the counter-pulse mode than in the co-pulse mode, whereas LAP was significantly lower in all driving modes than in the circuit-clamp condition. Furthermore, LVEDP, LVEDV, and LVSW were significantly lower in the counter-pulse mode than in the circuit-clamp condition. The counter-pulse mode of our RS modulation system used with a continuous-flow LVAD may offer favorable control of MR while minimizing RV dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app