Add like
Add dislike
Add to saved papers

Visible/near-IR-light-driven TNFePc/BiOCl organic-inorganic heterostructures with enhanced photocatalytic activity.

Although semiconductor photocatalysis has been reported for more than 40 years, the spectral response is still focused on the region of UV-Visible and it is seldom extended to more than 600 nm. In this work, visible/near-IR-light-driven 2,9,16,23-tetranitrophthalocyanine iron (FeTNPc)/bismuth oxychloride (BiOCl) organic-inorganic heterostructures have been synthesized by a two-step solvothermal method. The obtained products were characterized by X-ray diffraction, Fourier transform infrared spectra, scanning electron and transmission microscopy, energy dispersive X-ray spectrometer, UV-vis diffuse reflectance spectroscopy, nitrogen adsorption-desorption, and electrochemical measurements. The photocatalytic activity for the decomposition of methyl orange and bisphenol A solution can be significantly improved under visible/near-IR-light irradiation. Through detecting the main oxidative species by trapping experiments, the results show holes and ˙O2(-) radicals are majorly and minorly responsible for photodegradation respectively. What's more, the FeTNPc/BiOCl composite photocatalyst still retained the photocatalytic activity after three cycle measurements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app