Add like
Add dislike
Add to saved papers

The Swi3 protein plays a unique role in regulating respiration in eukaryotes.

Recent experimental evidence increasingly shows that the dysregulation of cellular bioenergetics is associated with a wide array of common human diseases, including cancer, neurological diseases and diabetes. Respiration provides a vital source of cellular energy for most eukaryotic cells, particularly high energy demanding cells. However, the understanding of how respiration is globally regulated is very limited. Interestingly, recent evidence suggests that Swi3 is an important regulator of respiration genes in yeast. In this report, we performed an array of biochemical and genetic experiments and computational analysis to directly evaluate the function of Swi3 and its human homologues in regulating respiration. First, we showed, by computational analysis and measurements of oxygen consumption and promoter activities, that Swi3, not Swi2, regulates genes encoding functions involved in respiration and oxygen consumption. Biochemical analysis showed that the levels of mitochondrial respiratory chain complexes were substantially increased in Δswi3 cells, compared with the parent cells. Additionally, our data showed that Swi3 strongly affects haem/oxygen-dependent activation of respiration gene promoters whereas Swi2 affects only the basal, haem-independent activities of these promoters. We found that increased expression of aerobic expression genes is correlated with increased oxygen consumption and growth rates in Δswi3 cells in air. Furthermore, using computational analysis and RNAi knockdown, we showed that the mammalian Swi3 BAF155 and BAF170 regulate respiration in HeLa cells. Together, these experimental and computational data demonstrated that Swi3 and its mammalian homologues are key regulators in regulating respiration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app