Add like
Add dislike
Add to saved papers

microRNA-22 attenuates neuronal cell apoptosis in a cell model of traumatic brain injury.

Traumatic brain injury (TBI) is a major cause of injury-related deaths, and the mechanism of TBI has become a research focus, but little is known about the mechanism of microRNAs in TBI. The aim of this study is the role of microRNA-22 (miR-22) in TBI-induced neuronal cell apoptosis. Rat cortical neurons were cultured and the TBI model was induced by scratch injury in vitro, before which miR-22 level was altered by transfection of agomir or antagomir. Lactate dehydrogenase (LDH) release and TUNEL assays were performed to examine neuronal cell injury and apoptosis. The activity of caspase 3 (CASP3) and level changes of several apoptosis factors including B-cell lymphoma 2 (BCL2), BCL2-associated X protein (BAX), phosphatase and tensin homolog (PTEN) and v-AKT murine thymoma viral oncogene homolog 1 (AKT1) were detected. Results showed that TBI model cells possessed a downregulated miR-22 level (P < 0.001) and more LDH release and apoptotic cells indicating the aggravated neuronal cell injury and apoptosis induced by TBI. miR-22 agomir attenuated neuronal cell injury and apoptosis of the TBI model. It also caused the corresponding changes in CASP3 activity and other apoptosis factors, with cleaved CASP3, BAX and PTEN inhibited and BCL2 and phosphorylated AKT1 promoted, while miR-22 antagomir had the opposite effects. So miR-22 has neuroprotective roles of attenuating neuronal cell injury and apoptosis induced by TBI, which may be associated with its regulation on apoptosis factors. This study reveals miR-22 as a potential approach to TBI treatment and detailed mechanism remains to be uncovered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app