Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Functional distance between recipient and donor HLA-DPB1 determines nonpermissive mismatches in unrelated HCT.

Blood 2016 July 8
The role of HLA amino acid (AA) polymorphism for the outcome of hematopoietic cell transplantation (HCT) is controversial, in particular for HLA class II. Here, we investigated this question in nonpermissive HLA-DPB1 T-cell epitope (TCE) mismatches reflected by numerical functional distance (FD) scores, assignable to all HLA-DPB1 alleles based on the combined impact of 12 polymorphic AAs. We calculated the difference in FD scores (ΔFD) of mismatched HLA-DPB1 alleles in patients and their 10/10 HLA-matched unrelated donors of 379 HCTs performed at our center for acute leukemia or myelodysplastic syndrome. Receiver-operator curve-based stratification into 2 ΔFD subgroups showed a significantly higher percentage of nonpermissive TCE mismatches for ΔFD >2.665, compared with ΔFD ≤2.665 (88% vs 25%, P < .0001). In multivariate analysis, ΔFD >2.665 was significantly associated with overall survival (hazard ratio [HR], 1.40; 95% confidence interval [CI], 1.05-1.87; P < .021) and event-free survival (HR, 1.39; 95% CI, 1.05-1.82; P < .021), compared with ΔFD ≤2.665. These associations were stronger than those observed for TCE mismatches. There was a marked but not statistically significant increase in the hazards of relapse and nonrelapse mortality in the high ΔFD subgroup, whereas no differences were observed for acute and chronic graft-versus-host disease. Seven nonconservative AA substitutions in peptide-binding positions had a significantly stronger impact on ΔFD compared with 5 others (P = .0025), demonstrating qualitative differences in the relative impact of AA polymorphism in HLA-DPB1. The novel concept of ΔFD sheds new light onto nonpermissive HLA-DPB1 mismatches in unrelated HCT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app