JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Stimulation strategies and electrode design in computational models of the electrically stimulated cochlea: An overview of existing literature.

Since the 1970s, computational modeling has been used to investigate the fundamental mechanisms of cochlear implant stimulation. Lumped parameter models and analytical models have been used to simulate cochlear potentials, as well as three-dimensional volume conduction models based on the Finite Difference, Finite Element, and Boundary Element methods. Additionally, in order to simulate neural responses, several of these cochlear models have been combined with nerve models, which were either simple activation functions or active nerve fiber models of the cochlear auditory neurons. This review paper will present an overview of the ways in which these computational models have been employed to study different stimulation strategies and electrode designs. Research into stimulation strategies has concentrated mainly on multipolar stimulation as a means of achieving current focussing and current steering, while modeling work on electrode design has been chiefly concerned with finding the optimal position and insertion depth of the electrode array. Finally, the present and future of computational modeling of the electrically stimulated cochlea is discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app