JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Unnatural amino acid analogues of membrane-active helical peptides with anti-mycobacterial activity and improved stability.

OBJECTIVES: The emergence of MDR-TB, coupled with shrinking antibiotic pipelines, has increased demands for new antimicrobials with novel mechanisms of action. Antimicrobial peptides have increasingly been explored as promising alternatives to antibiotics, but their inherent poor in vivo stability remains an impediment to their clinical utility. We therefore systematically evaluated unnatural amino acid-modified peptides to design analogues with enhanced anti-mycobacterial activities.

METHODS: Anti-mycobacterial activities were evaluated in vitro and intracellularly against drug-susceptible and MDR isolates of Mycobacterium tuberculosis using MIC, killing efficacy and intracellular growth inhibition studies. Toxicity profiles were assessed against mammalian cells to verify cell selectivity. Anti-mycobacterial mechanisms were investigated using microfluidic live-cell imaging with time-lapse fluorescence microscopy and confocal laser-scanning microscopy.

RESULTS: Unnatural amino acid incorporation was well tolerated without an appreciable effect on toxicity profiles and secondary conformations of the synthetic peptides. The modified peptides also withstood proteolytic digestion by trypsin. The all d-amino acid peptide, i(llkk)2i (II-D), displayed superior activity against all six mycobacterial strains tested, with a 4-fold increase in selectivity index as compared with the unmodified l-amino acid peptide in broth. II-D effectively reduced the intracellular bacterial burden of both drug-susceptible and MDR clinical isolates of M. tuberculosis after 4 days of treatment. Live-cell imaging studies demonstrated that II-D permeabilizes the mycobacterial membrane, while confocal microscopy revealed that II-D not only permeates the cell membrane, but also accumulates within the cytoplasm.

CONCLUSIONS: Unnatural amino acid modifications not only decreased the susceptibility of peptides to proteases, but also enhanced mycobacterial selectivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app