JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Expanding the applicability of electrostatic potentials to the realm of transition states.

Central to any reaction mechanism study, and sometimes a challenging job, is tracing a transition state in a reaction path. For the first time, electrostatic potentials (ESP) of the reactants were used as guiding tactics to predict whether there is a possibility of any transition state in a reaction surface. The main motive behind this strategy is to see whether the directionality nature of the transition state has something to do with the anisotropic natures of the ESP with their embedded directionalities. Strategically, some atmospherically important, but simple, reactions have been chosen for this study, which heretofore were believed to be barrierless. By carefully analysing the ESP maps of the reactants, regions of possible interactions were located. Using the bilinear interpolation of the 2D grids of the ESP surfaces, search co-ordinates were fine-tuned for a local gradient based approach for the search of a transition state. Out of the three reactions studied in this work, we were able to successfully locate transition states, for the first time, in two cases and the third one still proved to be barrierless. This gives a clear indication that though ESP maps can qualitatively predict the possibility of a transition state; it is not always true that there should definitely be a transition state, as some of the reaction surfaces may genuinely be barrierless. But, nevertheless this strategy definitely has credential to be tested for many more reactions, either new or already established, and may be applied to create the initial search co-ordinates for any well-established transition state search method. Moreover, we have observed that the analysis of the ESP maps of the reactants were very much useful in explaining the nature of interactions existing in those observed transition states and we hope the same can also be extended to any transition state in an electrostatically driven reaction potential energy surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app