Add like
Add dislike
Add to saved papers

Predictive processing simplified: The infotropic machine.

On a traditional view of cognition, we see the agent acquiring stimuli, interpreting these in some way, and producing behavior in response. An increasingly popular alternative is the predictive processing framework. This sees the agent as continually generating predictions about the world, and responding productively to any errors made. Partly because of its heritage in the Bayesian brain theory, predictive processing has generally been seen as an inherently Bayesian process. The 'hierarchical prediction machine' which mediates it is envisaged to be a specifically Bayesian device. But as this paper shows, a specification for this machine can also be derived directly from information theory, using the metric of predictive payoff as an organizing concept. Hierarchical prediction machines can be built along purely information-theoretic lines, without referencing Bayesian theory in any way; this simplifies the account to some degree. The present paper describes what is involved and presents a series of working models. An experiment involving the conversion of a Braitenberg vehicle to use a controller of this type is also described.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app