Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

miR-181b-3p promotes epithelial-mesenchymal transition in breast cancer cells through Snail stabilization by directly targeting YWHAG.

Epithelial-mesenchymal transition (EMT) is essential for increased invasion and metastasis during cancer progression. Among the candidate EMT-regulating microRNAs that we previously identified, miR-181b-3p was found to induce EMT in MCF7 breast cancer cells, as indicated by an EMT-characteristic morphological change, increased invasiveness, and altered expression of an EMT marker. Transfection with a miR-181b-3p inhibitor reduced the expression of mesenchymal markers and the migration and invasion of highly invasive breast cancer cells. miR-181b-3p induced the upregulation of Snail, a master EMT inducer and transcriptional repressor of E-cadherin, through protein stabilization. YWHAG was identified as a direct target of miR-181b-3p, downregulation of which induced Snail stabilization and EMT phenotypes. Ectopic expression of YWHAG abrogated the effect of miR-181b-3p, including Snail stabilization and the promotion of invasion. In situ hybridization and immunohistochemical analyses indicated that YWHAG expression was inversely correlated with the expression of miR-181b-3p and Snail in human breast cancer tissues. Furthermore, transfection with miR-181b-3p increased the frequency of metastatic nodule formation in the lungs of mice in experimental metastasis assays using MDA-MB-231 cells. Taken together, our data suggest that miR-181b-3p functions as a metastasis activator by promoting Snail-induced EMT, and may therefore be a therapeutic target in metastatic cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app