JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO2 over Cu Nanowire Arrays.

Angewandte Chemie 2016 June 2
In this work, the effect of Cu nanowire morphology on the selective electrocatalytic reduction of CO2 is presented. Cu nanowire arrays were prepared through a two-step synthesis of Cu(OH)2 and CuO nanowire arrays on Cu foil substrates and a subsequent electrochemical reduction of the CuO nanowire arrays to Cu nanowire arrays. By this simple synthesis method, Cu nanowire array electrodes with different length and density were able to be controllably synthesized. We show that the selectivity for hydrocarbons (ethylene, n-propanol, ethane, and ethanol) on Cu nanowire array electrodes at a fixed potential can be tuned by systematically altering the Cu nanowire length and density. The nanowire morphology effect is linked to the increased local pH in the Cu nanowire arrays and a reaction scheme detailing the local pH-induced formation of C2  products is also presented by a preferred CO dimerization pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app